耐用、穩定至上!引擎強化術!(下)

▲右邊為鍛造H型連桿、左邊為原廠I型連桿,不論是直徑或斷面強度,都是以H型連桿較佳,抵抗直下的力量非常不錯,且H斷連桿的旁邊還會再做凹槽,藉此以減少重量和增加機油的運送。
 
連桿重最細斷面
波司需減少磨擦
活塞之下接續的連桿,作用是讓曲軸、活塞能夠連動,它的大致要求和前者一樣,質輕且強韌的鍛造品也是最佳選擇。需要承接下推和扭曲力的連桿,在高轉高壓縮狀態亦有中間最細處彎折、斷裂的危險性,因此大改車很多會更換加粗的H斷面連桿(原廠連桿多為I斷面)。
 

▲右邊是鍛造連桿使用的固定螺絲,可以明顯發現出了長度比較短以外,直徑也比左邊的原廠連桿螺絲還要粗,該螺絲為ARP鍛造鋼材,可有效提高螺絲強度,大幅減少引擎重負荷時,連桿被拉開的問題發生。
 
通常高性能的連桿同時會用到全浮式活塞銷,其特性是活塞、插銷、連桿小端三者間都有自由間隙(兩側需加裝C形卡環防止活塞飛出),用手即可輕鬆組裝,這比起原廠件常用到採強力壓入的一體型半浮式活塞銷,在減低磨擦的表現上要高出許多,轉速上升的順暢度與極限當然會有所進步。
 

▲現今多數新世代引擎的原廠連桿在製造時,都會先整支製作完成後,再採用冷凍切斷法來分離上下端,特徵為結合面為不平整表面,用意在提高上下端的密合度,進而提高該處的強度。
 
若是以延後轉速的方式來提昇馬力時,還有一個要務是在於連桿大端內和曲軸相連的「小波司」,以及固定曲軸頸部於曲軸箱上的「大波司」強化。負責的軸承任務的大、小波司,在此不但要有應付高溫高壓的耐久性,本身也需具備能減少磨擦損失的能力,這兩者基本上乃是相輔相成的,因為減低磨擦力就會降低溫度,像本田性能化的B18C-R、B16B引擎,配置的波司寬度亦比一般的雙凸VTEC窄,而日本Power Enterprise社所發展的F1 Black Metal,更是藉由表面覆蓋鋸齒錐狀物,使波司表面可容納更多機油外,更能減少磨擦面積來達到性能訴求,這些都是實際的例子。
 
▲鍛造活塞與連桿可提高引擎承受高溫與高壓環境下的能力,尤其是想要作高增壓設定的引擎,更是需要先強化引擎腹內零件,才能避免發生像圖中一樣活塞環岸熔塌,甚至是連桿斷裂、穿破引擎的問題。
 
曲軸平衡性為重點
加長行程由此下手
下半座最後一個零件也是將爆炸動能轉換成扭矩的曲軸,要求的重點主要是平衡性和強度,一般都是拿原車的製品下去加工較多,由於現今汽車的馬力愈來愈大,原廠曲軸已鮮少見到舊式的半平衡型(一邊軸葉面積只達一半),取而代之的是各組軸葉對稱的全平衡式樣,如此對於再平衡的工作非常有利,唯一缺點便是重量較高。
 

▲重視性能的大、小波司組,不外乎要具備降低磨擦、工作溫度的能力,像圖中的日本Power製F1 Black Metal,除了是採三層合金的組合以外,表面更加上了鋸齒錐狀的覆蓋層。
 
改造曲軸時的步驟,大約是先做鏡面處理來分散應力,然後再將軸葉刃端稍微磨得尖利些,以取得破油降低阻力、輕量化和減低軸頸負擔的功效,最後就是上動態平衡機進行精密配重(最好連同飛輪一起),這亦是高轉速的一切基礎;如果是應付動力大幅提昇的引擎,那麼還需把整支成品送去表面硬化處理,才可以全然提高堅韌的程度。
 
▲曲軸軸葉上的鑽孔是用於配重,而軸頸部的凹穴是保存機油來潤滑波司,此零件的平衡性可說是高轉速的一切基礎(圖為E92 M3原廠曲軸)。
 
至於曲軸的改造幅度上,街車並不能像賽車一樣,把軸葉部削得既薄且尖銳,雖然此法最能突破機油的阻力,以及可達成徹底輕量化,但這樣還有軸葉剛性不足、甩油量較少易傷到活塞裙的問題(注意賽車曲軸為鍛造品且配置乾式油底殼),此外我們的活塞、連桿也無法做到那麼輕,想想看要是引擎內部機件的下方比例輕過上方,無法有效吸收穩定引擎內部運轉時的震動,在活塞上下擺動瞬間,便有可能會讓活塞發生劇烈晃動而發生損壞。
 

▲透過植入缸套的方式來強化引擎下半座,不只可拉長缸徑加大排氣量外,汽缸的整體強度也會好上許多,是最終極的下半座強化術,且原本的開放式水道,也可一併強化為封閉式水道。
 
進行引擎下半座的改造,除了能提高引擎強度外,若想要一併提高動力輸出,可以從提高排氣量著手起,然而排氣量的大小乃是由活塞的缸徑和衝程來決定,其中加長行程一項就是取決於曲軸,因此許多國外加大排氣量的鍛造腹內套件中,都會包含可加長行程的鍛造曲軸,這是相當極限的改法,可一舉提高引擎動力基本水平,相對費用也比單更換鍛造活塞與連桿來得貴上許多。
 
▲所有的引擎本體改裝手續,都須仰賴精密的組裝與事後的供油程式調校,才能發揮全部效果,就像講究的店家在組裝波司前都會先壓「米粉條」,測量曲軸與波司間隙,確認沒問題後才組裝。

耐用、穩定至上!引擎強化術!(上)

圖/童國輔
協力/AST亞仕德車業、廣名渦輪、國億車坊
 
在自然進氣引擎改裝過程中,引擎上半座的改造能立即突顯馬力上的增幅,而若真正延長引擎壽命,並提升引擎極限,就須仰賴引擎下半座的強化,包含:活塞、連桿、曲軸到引擎本體等,全都涵蓋在此範圍內,如果上半座的改造是在練武功招式的話,那下半座的強化就是在練內功,有深厚的內功底子,才能發揮所有武功招式的真正力量,否則很容易走火入魔的,也就是所謂的「爆引擎」!
 

▲引擎想要擁有一氣呵成的高轉速表現,不能只依賴下半作的精密組裝與重量平衡而已,還需上半座的高角度凸輪軸的改裝搭配才行。
 
上半座改裝目的
提高引擎出力
引擎想要擁有一氣呵成的高轉速表現,不能只依賴下半作的精密組裝與重量平衡而已,還需上半座的高角度凸輪軸的改裝搭配才行,否則高轉速的馬力無法延續下去,轉速拉不上去也無用武之處,這也是上半座改裝的主要目的。凸輪軸性能表現取決於開啟角度及揚程,大角度凸輪軸能增加「吸氣時間」,也能增加「氣門伸程」,讓氣門能「開得久+開得深」,自然讓能活塞吸入更多的空氣、提高容積效率。
 
▲所謂的高角度凸輪軸,都是氣門開啟角度超過280度以上的產品才能稱之,一般市售車所配置的凸輪軸大致在240度上下,屬於角度較小的Cam,道路版的改裝Cam,則大約在250度至270度左右。
 
而所謂的高角度凸輪軸,都是氣門開啟角度超過280度以上的產品才能稱之,一般市售車所配置的凸輪軸大致在240度上下,屬於角度較小的Cam,道路版的改裝Cam,則大約在250度至270度左右,而凸輪軸角度的計算方法,是指曲軸在720度的過程中,氣門真正開啟的相對角度。
 

▲高角度凸輪軸還需搭配強化汽門彈簧與汽門帽,才能發揮真正的效果。
 
以NA引擎而言,透過高角度凸輪軸的改裝,對於引擎馬力及扭力的提升有很大的影響,也是NA引擎想要獲得馬力明顯增幅的重要來源,。然而一般人認為Turbo車換Hi-Cam,似乎沒有那麼的重要?其實原廠Turbo車在設定Cam的時候,為了儘量減低Lag現象,大致使用小角度且低Lift的Cam,如果單純的增加渦輪Bar數,而沒有修正引擎汽缸內部的吞吐量,灌入汽缸的壓縮空氣依然會受到限制,排氣端未能適時增加效率的話,Turbine也得不到更強的驅動能力。所以Turbo車若想要獲得爆炸性的馬力輸出,依然得藉助Hi-Cam的助力,才能使馬力很輕鬆的提升,連帶也使得再加速力有明顯的變化。
 
▲改裝活塞的要求是在於輕量化和強度,這方面以鍛造製品的特性最為符合,右為鍛造活塞、左為原廠活塞,圖中可以清楚看出鍛造活塞在固定活塞銷的底座面積較原廠大上許多。
 
下半座改裝首步
鍛造活塞品使用
至於說到引擎下半座的改裝,首先不斷被往復壓縮並承受高爆炸力的活塞,除了要具備足夠強度、良好導熱性、低膨脹率等特點以外,它的重量也是愈輕愈好,如此才可減少連桿、曲軸的負擔,甚至是和缸壁間的磨擦耗損,使引擎運轉輕快而提高反應與輸出。此外,原廠鑄造活塞還有一個缺點,那就是材料的緊密度低,套一句實際的形容詞就是「脆」,遇到高負荷很容易裂,如果在高壓縮比的NA車或Turbo車上,伴隨產生的爆震、敲缸現象,鑄造品是無法承受此種負荷的,綜和上述原因,提高馬力的引擎(包含高壓縮、Turbo、NOS等)才會採用鋼材製成的鍛造活塞。
 

▲活塞的頂部形狀直接影響到壓縮比,這顆活塞都是EJ25渦輪引擎專用,因此頂部呈現凹狀,而下端的裙部長短、厚度則和行程、出力大小有關,右邊鍛造活塞黑色刻字部分其實比較內縮,用意即在減少不必要的磨擦。
  
按活塞的構造來看,其頂部形狀也直接關乎到壓縮比的大小,愈凸壓縮比會愈高、平或凹面則較低,自然這還得避開氣門和凸輪伸程的作動量,在上死點時不能相抵觸到,事實上當進行壓縮比增減的設定時,正確應該是更換對應的活塞才是,而非更換氣缸床墊片或挖大燃燒室。
 
▲鍛造活塞頂部的環岸厚度比原廠活塞更厚,目的在提高活塞頂部搖晃震動時的抵抗強度,尤其在高增壓引擎特別重要,而多數房車活塞環都有三道,上面兩道是防止竄氣得氣環,最下面一道是控制汽缸與活塞間機油量的油環。
 
此外,活塞在缸內運動真正和缸壁接觸到氣密、刮油的部分則是活塞環,多數店家在整理引擎時,發現活塞在缸內左右晃動時,有時並非是汽缸或活塞磨損,大部分是活塞環的磨損,久了活塞環支撐力不足,活塞裙才會左右搖擺而出現刮痕,因此活塞環的厚薄就成為馬力能否耐久的依據,薄的活塞環能有效減少摩擦、密合度高及輕量化的優點,對自然進氣高轉引擎有絕對性的貢獻,但熱傳導不良的缺憾下,使活塞冷卻能大打折扣,故一般房車及Turbo重負荷引擎大都不會採用薄活塞環,而是厚度正常或偏厚的規格。